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ABSTRACT

This report deals with the theory and design of antennas printed
on or embedded in a grounded substrate. A theoretical approach is
implemented which accounts accurately for the physical effects involved
including surface waves, The Green's function has been obtained by
synthesizing the fields of Hertzian dipoles which are oriented in
arbitraryv directions and which are printed on or embedded in the sub-
strate. By considering Pocklington's integral equation with proper
choice of expansion and testing functions, solution for current dis-
tribution and input impedance is obtained by matrix inversion.

As an example, thin-type printec 2nd erbedded circuit antennes
with symmetric or asvmmetric excitation are considered. Antenna
currents, input impedance, bandwidt} and resonant resistance are
obtained for a variety of antenna arrangements, A serious amount of
effort is alsc being placec in evaluating the impertance of higher

order surface wave modes which are determined by the relative dielec~

tric constant and the thickness of the substrate.
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CHAPTER 1

INTRODUICTION ‘

Monolithic or hybrid integrated circuits are finding increased use
in the microwave, millimeter and far infrared frequency ranges. There-
fore the development of antennas which are amenable to integration with
other printed circuit elements is of significant technolopical impor-
tance.

Printed circuit (microstrip) antennas were apparently introduce?d
first in the early 1950's [1], [2). However, their inherent advantagec
(conformality to a given surface, light weight, negligible volume, in-
expensiveness), were not put to widespread practice until the 1970's
[3) - [20]. The need to integrate microwave components, including
antennracs, necessitated the developrent of substrate materials with the
aprropriate thermal, mechanical and electrical properties in the
desired frecuency ranges [21] - [23). The environmental and technolc-
gical constraints having been resolved, the task remzined to develor
analyvtical methods whict would provide accurate desicr criteriez.
Extensive efforts have been expended to provide modele which prelic:
correctly the electrical characteristics of microstrip antennas. These
methods relyv either on a transmission line model of the printecd circui:
antenna [3! - [7] or an open resonator model {f] - [20}. The forrer
approact gives a heuristic explanation of the radiatior properties of
the antenna while the latter provides & more accurate precictior of the
anterna characteristics. Both models apply mainiy to the dominant

-

e for higher order

resonater mode and their accuracy is questiona®
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tode, especially because they do not account for the excitation of
surface waves.

Surface waves are important contributors to the printed circuit
antenna current distribution as well as input impedance characteristics
{24]. 1In addition, since surface modes decay as the inverse square root
of distance from their source they can be significant to mutual imped-
ance computation [25], a calculation of importance in phased array de-
sign. It has been established that regardless of how thin the substrate
is, the dominant surface wave mode is alwavs excited. The efficiency of
launching of this mode depends on the thickness of the substrate and its
dielectric constant. As more energy is trapped in the substrate the
microstrip antenna becomes less efficient. 1In many applications, such
as in the rillimeter or far infrared region [28)- [3(], todav'e technoel-
ogy providec substrates which are several wavelengths thick. This per-
mits many surface modes (TE and T¥) tec exist in the substrate, further
cormplicating the design, Tnese modes, too, can cause impairrent of
efficiencv,

It becores evident fror this discussien that a theoretical
approzct must be implerented which accounts accuratelr frr the phyeicel
effecte irnvelveld, includin, surfare waves. Suil ar aprrouc! exclude:

either of the previously mentioned techniques and relies or treating

the ricrostrir element ac arn antennz rather than as 2 transrission
T

he¢ antenns current

line sectior or a¢ & resornzter. Thie requiree that t
dictrihutios be ortainel firet by selvir, a twi-dimensioncl focklinptoen
integral esuation. The Creer's functieon ir tlic case can be obtained

b ewvnthesirin, the fieldeof Hertriar diy I« Wil are oriented ir

arbitrary directionc and whicl arc printed on th¢ substirate, thus

*




accounting properly for all the boundary conditions pertinent to the
problem.

An analytical solution of the two dimensional Pocklington's inte-
gral equation is precluded due to the immense complexity of the problem.
One must resort to numerical techniques, with the integral equation
discretized and the current distribution obtained by matrix inversion.
A numerical method which has found widespread and successful use for
the solution of Pocklington type integral equations is the method of
moments [24] - [27]. It has the disadvantage, like other numerical
techniques, of requiring extensive computing time in some applications,
e.g., in the computation of electromagnetic scattering from objects
large compared to wavelength. For the present application, the Green's
function pertinent to the problem is given by Sommerfeld-type integrals
which require special integration techniques when field and source
points are both on the substrate [24], [25], [31]. At presernt,
evaluation of these integrals is numerically time-consuring, thus
making the applicability of the method of moments to arbitrarily
shaped planar printed circuit antennas difficult,

In the present work, thin wire-type printed circuit antennas with
svmmetric cr asvmretric excitation are considered. The excitation is
assumed to be caused by a unit voltage generator and the printed wires
are taken to be thir compared to wavelengtt. The azimuthal asvmretry
of the current distribution is assumed tc be a second order effect.

The antennz currents, input impedance, bandwidtl! an’ resonant resistance
are obtained for 2 variety of antenna arrangements. A serious amount

of effort ic alsc being placed ir deterrininy the importance of higher-
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order surface wave modes so that a correct trade-off analysis of band-

width with substrate thickness can be implemented.
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CHAPTER 2

GREEN'S FUNCTION FOR PRINTED/EMBEDDED

DIPOLES AND POCKLINGTON'S INTEGRAL EQUATION

2-1. DERIVATION OF GREEN'S FUNCTIONX

This chapter presents the development of the Green's Function per-
tinent to the problem of linear antennas printed on or embedded in a
grounded dielectric substrate of thickness bt and relative dielectric
constant t¢_.

r

In order tc formulate the Green's function, an elementary hori-
zontal electric dipole (HED) is considered to be at (x', y', -h) as
shown in Figure 2.1. The assumed time dependence is ejwt and it is

suppressed throughout the report., Maxwell's equations take now the

following forr in region II (z < o)

?xﬁd =3d+jus £ :‘;d (2.1)
r o
- - 5 9
Tx ¥t = g BC 2.2
o

7,5 * F =0 (2.3)
.d

= .zd _f (2.0
£ €
r ¢

where the superscript d indicates field and source quantities ir the
dielectric substrate. The following potential function is now intro-

duced,
k2.
BC =y BC- - T xS (2.5)
¢ Ja
where E‘iwill turn out tc be the Green's functicr irn region II1. Since

-
-
v

5T ) = 0, equation (2.5) indicates that (2.,3) is satisfiel. A

*d . .
substitution of (2.5) into the curl equatior feor E~ gives the following

S e ey
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— 2=0

Figure 2.1: HED Embedded in a Grounded

Dielectric Stap




result
- EY
Vx(E -k G )Y=0 (2.6)

where kz = wzuo € €5 Since v x (ch) 2 0 1t follows that

Edo k2 g9 gud 2.7
with ¢ the scalar potential function for region 11. The relationship
between ¢d and E‘jcan be obtained by a substitution of (2.5) and (2.7)

into (2.1), {i.e.
Jwk

JEINE LI O LI L7 LI 5. L)
2
+ k229 gd (2.8)

Since the curl of E‘ihas been defined and, in addition, since Ed is

arbitrary, one can choose its divergence to be

- ->d=_’d

T 6 (2.9)

-

which is the Lorentz condition. The wave equation for Gd can now be

obtained from (2.8) and (2.9) in the form
o 2 - j“"‘“
(s 4k ¢¢ 03¢ (2.10)
k-
The Lorentz condition enables one to write in regien I1 for Ed and t°©

the result

EC=TC +8%) 4k (z.1
el

ane  BC¢= - Ty C (2.12)
JL»O

In a similar manner the electromagnetic field in region I is given v

- - - 7 -
E= (7 . E) + Po G (2.13)
and
< 0
e 4 - -
EF=-——7T3%T0 2.4
Jus
o
n ~ -
where }o ie the free space wavenurter, i.e. PoT e g . C dis the




Green’'s function for repion 1 and it saticfics the wave equation

9 jb“’: -+
2 +xH T3 (2.15)
o k2
o]

for a given current source 3.

The solution which satisfies the wave equation and the appropriate
boundary conditions, in each region of interest, consists of two parts;
the secondary solution which is the solution to the corresponding homo-
geneous equation, and the primary solution which is the particular
solution to the wave equation. The complete solution is therefore

> - -
C = Gp + Gs (region 1) (2.1¢)

.

an
Ed = E§ + Eg (region II) (2.17)
The existence of the primary solution is strictly related to the pre-
sence of current sources in the region of interest.
For the casec considered here the primary solution has an x-cor-

ponent only [32]~[3-] giver bv (see Appendix &)

Ju- ¢ 1 Iy
ey [ Y B €216
- S © v
wherc
” a1l a n 1
u, = - l;]‘, v = [37 - ¥
2.1
e (s - x4 (v - "))
and

Due tc the atsirn-¢ ¢f sources ir region T the scviondary components are

[22) = (a7
- -y - -9




Juy « -
G = - -%/ FOO) 3 06) e o (2.19)
4ﬂk; o
Juu, > -u 2z
G, = - ——5 cost¢ ) Jl()[) e o d; (2.20)
s 4n k o
°
and
Jwu o« -
¢ - ;f 3,00 PPy R20)e™?) @ (2.21)
drk o
Juy = -
Ccslz = - g cost/ Jl(kc)[‘:d(l)euz'* “d(K)e Y2es (2.22)
4rk” I'Q

In the equations above F(3), ¢(})), Fd(l), Rd(l), cd(l) and ¥d()) are

determined by the boundary conditions at z = 0, -b given by:
E =5, =5, 8 =18 =wé (2=0) (2.23)
3 vy ox X v y' x X
and
E2e0 =0 (z=-b) (2.22)
v X
Application of these boundary conditions yields
. (1 - e % e stnhfu(o-n
¢ () = - - (2.23)
fl(),b) - f203,b)
190y = ¢90) e (2,26
rd(‘) 3 (u-uo) Sf?i[?(b-h)] (2 2
T £,0.,0) e
) ~uh <2uk
Rd()) _— Ze uh Fd(>)] e out
ZtT}sinhlu(b—h)]
Fiu) =
fl(‘ ,}l
2- _(l=c< )" sinhlu(b=h)lcosh/u*)
R

fl(,‘-') .‘rg(},‘l')
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ir which
fl(x,b) = uosinh(ub) + ucosh(ub) (2.31)
fz(x,b) = uocosh(ub) + usinh(ub) (2.32)

With the above expressions substituted in equations (2.18) - (2.22) the

final form of the Green's function is

e 7 et h(u(b=h)]
C=~-—— J p)e o sinh{u(b-h .
x ani . o f “Oob) ado. (2.33)

jur ) "z ;
6= - —— (1-¢ )cos? J.(p)e o sinh[u(b—h)cosh(ub) 2.

2 e e ) .34
2l o ! £0,0 0,5 ¢ 230
a jc:o o sinh[u(z+b)] [ucosh(uh)+u sinh(uh)] ,

€= == | 3 00) oo meee — e P 2 d), -beze-n

X ZrL f (O, b) u - =
(2.35)

Gd= _ Ju’gf: (Y sinh{u(b- h)] [uc05h(uz)-uosmh(uz)] l a5, ~hrz<C

* 2kt ° £,0, b u
(2.3€)

Jur :
d_ o . sinh{u(b-h) Jcoshlu(z+b)].2
ol (1-:r)cos.~/P 3,00 NCRSEIGRS “a (2.37)
rk o

For the case of the HED on the dielectric interface the Creen's function
ie piver by equations (2.33) (2.34) for region (I), ani by (1.3%V,
(2.37) for region (I1) with h = 0.

2-2, POCKLINGTON'S INTEGRAL EQUATION

It is assumed that the dipole showr in Fipure 2.2 is very thin so
that {ite radiuc 2 ie mucl smaller than the wavelength )g in the di-

electric, i.¢.

AR (2.38)

- —-
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Figure 2.2: Wire Dipole Embedded in &
Grounded Dielectric Slab
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17 it is assumed that the current dencity on the dipole is given by
39 - 5% ¢ (2.39)
X X
the integral equation for this problem is

L = = -
2 xy,2) = [ K21+ wncd @, 3d
(o]

(r') drx (2.40)

d ,» + A ' A
where G~ (r/r ') is the dyadic Green's Function and is given by

cd@Enn - ci GFREDTX+E @GN (2.41)
and L the length of the dipole.

In addition 1 denotes the idemfactor (unit dyadic) and it has the forn

T=xx+vy+22 (2.42)
vhile
TeX o4y 47— (2.43)
ox oy a4
Equation (2.40) can be rewritten as
I .2 c D a
L . ¢t 6 .
£¢(%) =f ﬂl('yfcd 4 +——-Z->Jd_ X +
' x .2 . X
c ex axtz
2.4 Z2.7
+ <kzcd + © C} + Gz ) N
z — JTov o+
evE¥ evez >
”
SRR
t\—+—5 ] J z|ér’ (2.64)
. "2 % X

Frorm. relation (2.44) it ic observed that the electric field consists

d @ d é
of three components Ey, FV and IT_. However, orliv the Ex component
" <

enters the integral equation for the curren: distribution. Fror

. . d ; .
equatiorn (2.4%) the Ey component is giver




L aa SR Lt

L a2c¢ 2%

d,~» 2 d X z d N

Ex(r) = kG 4 e+ —— Jx drx (2.45)
o x ax axoz

It is easily determined now that the x-component of the electric field

for the case h = 00 is as follows:

. (Y, ?%, ¥,
= ————— - L
E (D e, + —X+ =) g ar (2.46)
(o]

d d .
with Gx’ Gx’ Gz’ Gz defined previously.

A consideration of the following relationships

aci act
=2 = - 5o (2.47)
andé
rle .
E: s - %f (c.e8)
leads to
¢ Floe 22 a4 ¢ g
E-(r) = k'Gi + :;5 (6, - € | 3, er; (2.49)
) o L oy
1. [ E_—)
- 2 -
- e . - yp ! 2,50
Ex(r) f Lkotx + — (Cx G) Jx er (2.5
c 3%
with Cd, G giver by (see Appencdix B)
é j(‘.'o ’ sinh{u(b-t)]
G = - -—= (1-¢) Jo()\;) —f“—(‘)“b'\——'J t.
27k L 147
sintfu(z + BY} . .. o £
AT e (2.5
¢ = -0 D 1 p) €802y SEnRTh coshlurl Ly eny
- 2”2 e ~0( p) e © hc < L1 (0 -
| 4 -
¢ .
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CHAPTET =

FORMULATION OF THE PROBLEM FOF

KUMERTCAL ANALYSIS

3-1. MFTHOD OF MOMENTS

The purpose of this chapter is to present the basic principles of
the Method of Moments [ 35],[37] as well ac its application to the spe-
cific problem of the dipele embedded In & grounded dielectric substrate.

Throughout this chapter, the radius of the dipole is assumed tc be
much smaller than the wavelength in the dielectric, so that the current
mar be assumed to be distributed unifornly around the cylinder. 1If one
observes the current distribution from an observatior point on the
cvlincder axis thern the distance between the source and the observaticr

pcint recduces t:

"
—~
“
L}
~
-
+
s
.

It ie tc be erpliacsizecd thrat the dipele or wire cvlinder ie not
assumel t¢ be in‘initesimalliy thin and therefcore the sinpulisrity which
arisec ir the corputaticn ¢f reactance ic overcor. whiT the wire
ralic- gnes tc zoves

The unifvirn, concert of the nurerical treztment of input impe-
dancte an? radiztior problen: is the metheld of mo~ewte.  This geners
aprroact tc thie kin’ ¢7 prohlerme je o ereertislln & reductiorn of the

b

assntjate’ interrel equatirt to & sveter ¢f livear algebraic equation:

ir Y ounknowns,  The Y ounkrnowrse are vesualis cocfiicients in sone apyro-

priate expansicr of the current distritutio-




The general method of sclutjon will be discussed in the notation
of linear spaces and operators and hence the specific problem studied
here will be put into this notation. The integral equations derived in
Chapter 2 (2.52 and 2.53) can be put into the form of an operator
equation using the concept of linear vector spaces as follows:

Ly P = (z,}) (3.1)

with Lop given by
L 2 32 - -
= - —— - . '
Lop f[kocx + - (c, c;)] (x-dr)) (3.2)
¢

in air and
f [k c + (c - cd)] (;-d;;() (3.3)

i
j in the dielectric substrate.

! .

In equation (3.1) (Ex;> 1s a known excitation function or source and J
is the unknown current distribution. 1In addition to the above it is
necessary to identifv the inner product < 3, (Ex;) >, which is defined

to satisfy in Hilbert space the following relations

< 3, (EX > = < (E ;), 3 (3.4
X X
<u'5+e(£§),h>=u<3,'ﬁ>+e<(Ex;’.),i> (3.5
X
- - -
<, 35 043¢ o0 (3.€)
->
=0 4 J = 0

- -
where a, Ff are scalars; J x h = 0 and * denotes a cozplex conjugate.

The inner product may be in the forn

Y
1

<3, (r?'w-f I ¢r (2.7)
X x
O
an? since
€ (T/T') = C (2'/7) (3.€)

15




arl.
L2 .2
'S§ = 'dfj (3.9)
x ax'
then it can be shcwn easily from equations (3.2)and (3.3) that
<1 D, (B >=<3, L (EX > (3.10)
op X op = x

which means that the integral operator Lop is self-adjoint. Based on
this fact and on the physics of the problem it is concluded (see
Appendix C) that there exists a unique solution to functional equation
(3.1) and therefore the existence of the inverse operator results as a
consequence, i.e.

3= Lo;l (E,%) (3.11)

The procedure for obtaining a solution in the form of equation

(3.11) can be divided into four steps:

1. Expand the unknowr vector in a series of basis functions, Jr’

H

-

1
i |
spanning J ir the dormain of Lo . ]

* |

2. Determine a suitable inner product anc¢ definc a set of
weighting functions. 1
3. Take the inner products and therebw form the matrix ecuaticn.

4. Solve the matriy equation for the unknowns J.

3-2. GALERFIN'S METE™

For electromagnetic input impedance and racdiation problems a spe-
cialization of the general method of morerte is particularly convenient,
In the first ¢f the four steps above the current distribution functicor

- -
J is expanded ir & firnite series of bacis fun:stions J1 (G=1, ..., ™

define” ir the doroir of Le"
4

. o e




-> \‘ ->
J=21, 3. 3.12
ERR I ( )

with 1, € C
J

Substitution of equation (3.12) into (2.1) yields

- >
3 L 1. J, Y= (EX) 3.13
op (%; J ] ) ( X ( )
’ and, because of the linearity of Lop‘
-+ -+
Z:I. L J.) = (E 3.14
1y, G = B3 (3.1¢)
results.

In the second step a set of weighting functions ﬁk (k =1, ...N)

ic defined which is chosen to be identical with the basis functions i.e.

and then the following inner product is formulatec:
21, <, 1 () >=c<i, (E3) > (3.15)
T b k X

This leads to the matrix equation

_— - - - i (’ 7 - - —7

< Jlo LO? (Jl) > < Jl, LO;‘ (JZ) > 11 f I < ..A:, (L)‘.)\ > i

! % |

- ! o

‘< Jz, LOP (Jl) 2 I:' ! < v (-X‘\ \‘
; i
‘ ' i

i . : |
1 . ol
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Egquation (3.16) may be sclved by standard matrix inversion techniques
for the unknown current vector [J], i.e.,
-1
(3 = [z} ~ V] [3.17)

where [2)

generalized impedance matrix

] (vl

generalized voltage vector

3-3. CHOICE OF BASIS FUNCTIONS
For the numerical solution of a given input impedance problem, one

of the fundamental decisions to be made is the choice of basis functions

jj' Theoretically these are infinitely many sets of basis functions

| but practically there are only a few which provide an optimum solution

to the trade-off between accuracy and computer time for the specific

i ! probler. However, it is true that the closer the basis functions Jn

I resemble the actual current distribution on the radiator, the better

the convergence and stability of the generalized impedance matrix.

There are two classes of basic functions:

1. The entire—domain basis functions. These are defined and are

nen-zerco over the entire domain of Lo“ except possibly for a
P

countable union of sets with measure zerc. Thev alsc satisfy

the boundary conditions for the specific pretler.

2. The sub—dumain basis functions which are norn-zerco functions
over parts of the domain. 1In the case of wire radiators this
concists of dividing the antenna intc overlappinz or non-over-
lapping sections.

The implementation c¢f one or the other kind cf basis functicns

depends or the specific protler. In the case of artitrarily shaped

radiators the problenr can be simplified if sub-domzir basis functions

1t




arv used to approximate parts of the radiator by N wire segments. Also
in the case of certain geometries (linear dipole, open or closed cir-
cular loop) if the segments representing the radiator are identical
then there is an appreciable reduction in computer time. This is due
to the fact that the formed integrals extend on the sub-domains and not
on the entire domain.

For the problem of the printed/embedded dipole the most appropriate

set of basis functions is found to be of the following form (see Figure

3.1)
- - in[k(x'-x45_ sin[k(x; -x'N
Jj = x Pj_l_i¥1L79i_}J~}2j + Pj —_—L—%;Sﬂ-~——- & (z+h) (3.18)
smk{x s1 "%
with
1 ¥,y < x' < x.
P, , = J J (3.19)
j-1
¢ elsewhere
1 x, <x' <
an¢ P = ) i (3.20)

0  elsewherc
These basis functions, together with the inner product defined earlicr,
will be used for the formation of the matrix ecuatiorn in the next

sectior.

3-4. FORMULATION OF THE MATRIY EQUATIOY

As mentionecd previously, the choice of basis functione is deter-
mined by many factors dictated by the probler under consideratiorn. For
the case of maryv parallel dipoles printed on or erhedded in the di-
electric, (see Figure 3.2) the basic functions car be modified slightl:

tc be of the forrm

te e e - U
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Figure 3.1: Piecewise-Sinusoidal Currents

on aWire Segment
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jqu = f(x,x";j) 6(;'-yp) é(z'—zq) (3.21)

In this case, the current distribution inside a surface surrounding all

the dipoles will be

1Pd 3qu (3.22)

By substituting (3.22)into (3.1), and by using (3.2) and (3.3) 4t car

be found that the electric field in air and in the dielectric is as

follows:

an’

(8]
(8]

Rl e o B TN NE S SR - e -




M(p,q)-1 1 ;
d -~ ' Pq . 1
= 1, - e :

I':x 2~ 24 J sinkf
P q *

j=N(p,q)+l

J

'
J 4

2 '_ |
G sin[k (x xj_l)]dx +

k

2

+ k sinfk (x -x')]dx' -

I
-

i+l

! . d d
- 2k cos k7 (G, -G )lx,= +

! R oo BRI S T(S e S l S(xtey ) E(z'-z )

5.1 ' j+1] F g

(3.28)

The location of the voltage generator deterrines which of these tw:
expressions should be used for the formation of the matrix equation.

For the case of Figure 2, where the excitation is or an erhedded dipole

equation (3.24) is substituted into (3.7). By using equaticns (3.3),

(3.15) an2 (3.22) one can determine in a straightforward marner that the

elements of the generalized irpedance matrix are giver b

VPG o 1 42 e - o
Zeg 7 e )T S emr) Gt )

P

a= -1, a'=-10

k+a+:

AT R S 1 4L AT AR Y gy




v

sin {k!ﬂxa + (x -x){}- i

k+a+l

x|}

: ]
i . sin {kllxa + (xj+a+1

} Gd <\/(x-x')2 + (y-y')2 ] z‘) +

xk+a+1 ‘
+ Z Z k [1-(2 cosk£x+1) «&(a")) -[ dx I
X

a=-1,0 a'=-1,0,1 k+a f

b sin {k!ixa + (x -x) '}

k+a+l

[Gi (\[’.x-x‘): + (y—y'): s 23 z')-

f --Gd ( JQx-xj+a.)2 + (y-y')2 ;2 z')] (3.25)

The matrix equation thern takes the final forr

%

:

l

2 uv/pg Pg - LV 2
i; [ij ] . [ij | \kj (3.26)
3

é

LV . .
where V' . are the elements of the excitatior vectoer.

kj
E For the excitation of the driven dipcle shown in Figure 3.2 ore
E can use a voltage gap generator or a frill of magnetic current
‘ {36] located at the feed point. From these two wave the second one
t although it has an exact (or nearly so) model of the phvsical gap at

}
g the feed point, it complicates the probler especially in the case of
a printed dipcle since half of the dipole’s crose section is in the
air and half embedded ir tne dielectric. For this reason a voltage gar

eneratcr isc corsidered at the feed prirnt and all the elements of the
g p
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excitation vector become zero except for the one which corresponds to

the infinitesimally thin gap.




] CHAPTER &
EVALUATION OF THE SOMMERFELD TYPE INTEGRALS

4-1. SINGULAR POINTS AND RELATED SURFACE WAVES

As shown in Chapter 3, the elements of the generalized impedance

e i e

matrix consist of a summation of double and triple integrals. One of

R TETT

these integrals is a semi-infinite integration resulting from the

Green's function. The integrand of this integral is an expression of
transcendental functions multiplied by Bessel function of the first-
kind and zero-order., Furthermore this is a Sommerfeld-tyvpe integral and
the existence of essential singularities in its integrand necessitates

i very careful treatment. In this chapter, the computation of these inte-

’ grale will be shown explicitly. 1In addition, the approximations emploved

:

will be justified and an estimation of the error intoduced by these

approximations will be made.

From equation (3.25) it is obvious that all the singularities of

the integrals considered here result from the Green's function. Further-
more as was shown in Chapter 2, the integrand in the se-i-infinitec

integrals is a functior of the parameter ’ throug? the racicals

=&

us [ - k) (<.

y: | R

A

i3
)
>
'

- 2oy L.
o= ko) (

whict are doutle-valued functions of the complex varia®le *. However,
the sigr of the radical v does not affect the single-valuedness of the

integrales, as the terms involving the radicel v arc even functierns of

. Therefcre, oniy the brancht cut contrihuted b the radical U ie

considerel. The choice of the branch cut is not artitrary. 1Its
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pesition is determined by single-valucdness and convergence of the

E integrals, as well as the outgoing wave character of propagation.
! At first, by considering the requirement of an outgoing wave it
i can be shown (see Appendix D) that the real and imaginary parts of the

‘ integration parameter ) must satisfy the following relations
* Re[2] >0 (4.3)

' Im[>]) >0 (4.4)

A possible position of the branch cuts governed by these two
relations is shown in Figure 4.1. For a given complex ), u, can be

written as follows:

u = ik DR (4.5) ]

; o] [o] [o) !
‘ with ;
| o PN ?
f vﬁ-ko = qu—ej'l/‘ (4.€) :
i

— 4 a
! VA =T 3027 (4.7) 1
c 2

' Fror. (4.6), (4.7) and (4.5) one obtains i

—— i -
v = vy, Gt ) (¢.6
0 172

Fror Figure 4.1 it can be observed that. for all * irn thc first qua-

i drant, the angles S and ¢, are both positive, with
.
r 0 gy < 90° + ¢ ((&.9) ;
; and ;
I 0 goe, c 90 - (4.10 |
i
By congicering (4.9 and (4.10) the inequazlit: ;
‘31+::
¢ —— < an result: .
27
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Figure 4.1: Complex Plane Geometry
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This means that both the imaginary part and the real part of the radical
u, are positive, Thus the choice of branch cuts as shown in Figure 4.2
satisfies conditions (4.3) and (4.4). This choice also imposes the
following relations:

Re(uo) >0 Im(uo) >0 (4.11)

Re(u) > 0 Im(u) > O (4.12)
In Chapter 2 it was shown that all the components of the dyadic

Green's function were of the form

bl N(X,b,h,cr)
Gi = f Jo(}\o) 'D—(}Tb-’h_’c—r) dx (4.13)
(i=x,2) o

N(l,b,h,sr) is a complex function with singularities of order less than

one (at most), while the function D(A,b,h,cr) is of the form
D(;,b,h,sr) = £ (,b) - £, (x,b) (4.14)

or

D(),b,h,et) e fl (,b) (4.15)

with fl (x,b), f2 (>,b) given by
fl (+,b) = CN sinh(ub) + u cosh(ub) (4.18)
f2 O,b) = €. Y, cosh(ub) + u sinh(ud) (4.17)

The integrand in equation (4.13) has poles whenever the function

| D(l,b,h,cr) becomes zero or when either one of the functions fl (b)),

f2 (»,b) become zero. The zeros of these twe functions lead to surface-
f wave modes. Partjcularly, the zeros of f] (3,b) give rise to TE

surface waves while the zeros of f, (},b) correspond to T surface (

29
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tigure 4.2: Path of integration
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waves. Assuming that k, ko are real numbers (lossless dielectric)
the roots of equations

u, = -u coth(ub) (4.18)
and

€N, =~ u tanh(ub) (4.19)
lje in the strip ko < Re()) < k and are all real. 4raphical solutions

for the roots of these two equations are shown in Figures 4.3 and 4.4

with the circles having radii a given by
2 S 2
a” = ( cr-l) (kob) (4.20)

From these figures it is obvious that a surface-wave mode exists only
if a is greater than %u As kob increases, the number of proper and
improper roots increase continually. The proper roots charaéierized by
positive real values for u, and positive imaginary values for u lie on
the proper Riemman sheet while the improper roots, characterized by
negative real values for u, and positive imaginary values for u, lie

on the improper Riemman sheet. Because of their location, only the
proper roots yield surface wave modes and these have a significant
effect on the input impedance and radiation characteristics of printed
antennas.

4-2. NUMERICAL INTEGRATION OF THE INTEGRALS

The integrals in the expression for the elements of the generalized

impedance matrix can be put in the following two forms:

Xk+1 J""l , , o«
1 - dx ¢(x) dx'c(x") Jo(lcl) f(l,b,cr) Ad)
. . o (4.21)

k 3

and
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Figure 4.3: Graphical Solution of the

Equation ub=|ub|cot|ub)
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Figure 4.4: Graphical Solution of the
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X+l @
I, -[ dx ¢(x)[ J 00, £0,b,e ) Aadh (4.22)
with *k °
oy = Lex)? + (y-yH 21" (4.23)
2
oy = [xx % 4+ (yyH?) (4.20)
» The infinite integration is performed along the real axis and is com-

pleted in two steps:
1) Numerical integration over the interval {0,A] where A satisfies
the relationship coth (/A2 - k2 b) & 1
2) Analytical evaluation of the tail contribution which is

actually the integratijon over the path [A,=).

These two integrations will be analyzed separately because they

have to be treated in very different ways.

4-3., INTEGRATION OVER THE INTERVAL [O,A) |

The integrals given by equ. (4.21)and (4.22) are now in the form i

+1 X5+l A
I1 .f"' dx ¢(x)[ dx' O(x')[ Jo();l) f(x,b,sr) AdA (4.25)
Xy o
A

k+1
1, ‘,[‘ dx ¢ (x) 3, (e ,) £0,bye ) Ada (4.26)
X

e}
k

Consider that the function F(;,b,er) is given by

A
" = , 4.27
F(o,B,e ) f 3, () £0,b,e ) Ad2 ( )
[o]

In order to find the first-order derivative of the function F(:,b,cr)
with respect to x, both sides of equation (4.27) are differentiated and 1

the order of integration and differentiation is interchanged, yieldiné

e (L e - AP T A4 NI -




d F(s,be) R a 3 (o)

_T = —ax_ f (A,b,er) Adi (4.28)
o

Since ¢ is the distance between the source and the observation point,

given by
2
o= [(x-x")? + (y-y") 1 (4.29)
the derivative of this zero-order Bessel function (equation 4.28) can

be written as follows:

d Jo(>:) Jl(%o)
g = - 5 (x-x") (4.30)

Equations (4.30) and (4.28) result in the following relation:

d F(s,b,e) ! A )
B T = - 5 Jl()\c) f(X,b,Er))‘ dx (4.31)
o
From (4.31) it is obvious that the derivative of F(c,b,cr) with respect
to x can take large values for specific b and € which in turn in-
creases considerably the error of integration in (4.25) and (4.26).
In order to avoid this undesirable integration error it has been

found necessary to interchange the order of integration so that the

space domain integration can be performed first. Thus, equations (4.25)

and (4.26) take the form

A et xj+1 ' ' 2
I1 = dx ) f(x,b,cr) dx ¢ (x) dx' o(x'") Jo(Xgl) (4.32)
o

Xk

*3
A k+
12 = d. f(x,b,er) %x ¢ (x) JO(X:Z) (4.33)
o Xk

Because of the way A has been defined, A 1s much larger than k.

Therefore as » moves from O to A, it passes through the values ko and

—- ———— e - v
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k, causing the radicals v and u to alternate between pure real and pure
imaginary values. This fact, as well as the existence of poles between
ko and k, make it necessary to divide the integration interval into the
following subintervals:

1) 0<h < ko: The integration over this interval 1is performed

numerically, using a modified Romberg~quadrature method [39],
{40) for the integration with respect to X and Gaussian-
quadrature with fixed points [41] for the double and single
x and x'~integrations. The integrals contribute to the
radiation resistance and to the reactive part of the input
; impedance.
! } 2) k° < A < k: For the integration over this interval a singu-
3 ; larity extraction technique is used (see Appendix E) which
3 transforms the integral into a finite series plus an integral
of a slowly varying function. This finite series gives the
contribution of the surface wave modes and the number of its
terms depends on the thickness of the dielectric as well as
the dielectric constant €, -
3) k < X < A: Numerical integration is again invoked here in

exactly the same way as it is performed in the first sub-

2l e sxiasi gt dct )

interval,.

4-4, TAIL CONTRIBUTION

In this case the integration with respect to 3 is extended along

the interval [A, =). The use of the equality

coth (Vlz - k¢ b) = ] for » 2 A (4.34)

T T —CA s« i
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simplifies the integrand to a form which involves radicals of U, u.
The order of integration is not changed in the integrals (4.21) - (4.22)
but the infinite integration is evaluated analytically by making some
approximations which are found to introduce a negligible error. From
these results the integrations obtained by the method of moments are
computed numerically. A technique of extraction of the fast varying
terms is adopted to obtain better accuracy and to reduce computer time.
Using the relation (4.34) the Green's function as it appears in

Pocklington's Integral Equations (2.52) and (2.53) is given by

@ uz'
- 0
G (tail) = [ J (i) e %> £ Adr 229 (4.35)
x .I; o u_+u 2'<0
* -u 2z uz' 1 1 220
G(tail) =f Jo(,xc) e o e [u " T w])\dx , (4.36)
A o ro 2'<0
4 1 * [e-u|z+z'l u-u_ e-u|z+z'|
- — - '
Gx(tail) 3 A'Jo“‘“) = u+u° + " ady z,2'<0 (4.37)

d =1 ) -ulz4z'] 1 “r '
G (tail) 2] Jo()\p) e T T Tu Aadx z2,z'¢<0 (4.38)
A [o] r O

i

jwuo jmuo
where the factors =~ 2 and - - have been suppressed,
ano 2nk

Since X > A, with A sufficiently larger than ko and k, after appli-
cation of the binomial series expansion to these radicals the tail part

of the integrals can be written as

1 1 1
6 (tail) = 3 = - F, (4.39)
[1-e,(A)] [1-e,(A)] e
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1
c(tafl) = 1 1 . 2 -{l-p
(1-6,(A)) [1-6,(A] (e 4D [1-c, (M) [1-gW1] [° °
(4.40)
L €, (A)
\ d 1 1 1 |1
GC(tatl) = - ——— —-F| + = ]>-F (4.41)
x 2[1+c, (A)] lRl 1 2 l“z 2'
) d 1 1 1 1 1
i G (tail) = |z’ —_—1+E1(A) -3 (1+E.r) [1+€3(A)] . |—R_1 - Fll (4.42)
; where
| ¢ = [(x-x")? + (y-y") 21" (4.43)
- Fom A3 (A - TR () B (A) - 3 (A) H(A)] (4.44)
v
o 2 2 2.k
= [(z42")? + 14e (A 4.45
N R1 [(z+2 o 1 64( 171 ( )
3
\ i R2 = [(z-z')2 + cz [l+1h(A)]2] (4.46)
|
|
B A“-k°
| F =f 1, (e, D) e g (4.47)
[}
-tlz=z'l g, (4.48)

3, (to[1+£4(A)]) e

% A% -k
o [
(o]

e sl

The integrals (4.47) and (4.48) are evaluated numerically while
the functions el(A), ez(A), 53(Af and ca(A) are correction functions
because of the error introduced from the neglected higher order terms
in the binomial expansion. For a value of A approximately equal to

120 the error i{s no larger than 10-4 of the value of the tail contri-

2%
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bution and it can be neglected.

By substituting these expressions for the tail part of the Green's
function into equations (4.21) and (4.22) and by using a technique for
extraction of the fast varying terms one can show that the integrals
are reduced to a summation of integrals. The integrads are summations
of slowly varying functions and a finite series of logarithmic func-
tions resulting from the integration of the terms %, %— and %— in

1 2
equations (4.39) to (4.42).
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CHAPTER 5

NUMERICAL RESULTS

5-1. DESIGN PROCEDURE FOR MICROSTRIP DIPOLES

This chapter presents design procedures for microstrip dipoles
printed on or embedded in the dielectric sucstrate, Numerical compu-
tations have been performed for very thin wire dipoles with a radius
a = 0.,0001 Ao. The dipoles are centér-fed by an in phase unit voltage »
delta gap generator except for one particular case where the dipole is
fed asymmetrically. All the dimensions presented are normalized with
respect to the free space wavelength Ao. Due to an assumed time
jwt

dependency of e , inductive reactance 1s positive in all plots. The

material given here relates the antenna geometry (dipole length, sub-

strate thickness, dielectric constant, dipole-ground plane distance and
feed point location) to antenna characteristics (resonant length, reso-
nant resistance, current distribution and bandwidth). The presentation
of the numerical results is completed in three steps; at first a

dipole printed on the dielectric interface is considered and its
characteristics are discussed in terms of the dielectric constant and
substrate thickness. After that, this dipole 1is considered as being
embedded in the dielectric and the change in its performance is studied.
At the position b' = % the dipole characteristics are considered in
terms of the dielectric constant and the substrate thickness and are

compared to the corresponding values for the printed dipole.
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5-2.  DIPOLE PRINTED ON THE DIELECTRIC INTERFACE

a. RELATIVE DIELECTRIC CONSTANT VARIATION

One of the most important characteristics of a given dipole is {ite
input impedance. Figures 5.1, 5.2 and 5.3 show the real and imaginary
parts of the input impedance when the thickness of the dielectric sub-
strate is equal to 0.1016x°. The relative dielectric constant with
values of 2, 10 and 35 permits the excitation of one, two and three
surface waves respectively. From these figures as well as additional
data, it has been concluded that, as the relative permitivity increases,
the reactance becomes increasingly capacitive. The indicated trend is
that fewer resonances occur with larger €p+ In additfion the input
resistance curves show an increasing number of oscillations and a
decreasing maximum value. The latter observation implies less and less
energy radiated into space, i1.e. a decrease in the radiation efficiency
of the antenna, since energy is trapped in the dielectric substrate in
the form of surface modes, Figure 5.4 shows how the resonant length
Lr varies as a function of €yt The effect on the resonant length of
each new excited surface wave is expressed as a discontinuity in the
derivative EEEgEE) which happens exactly at the transition points.

o€
b 4

Figure 5.4 is also another interpretation of the decreasing radiation
efficiency of the antenna since Lr decreases with increasing €pe
Figure 5.5 shows the current distribution on a dipole of length L =

0.65 lo with substrate thickness b = 0.1016 Xo and for €, equal to 2,

10 and 35. The increasing €y (from 2 to 35) results in a larger

number of zeros of the current distribution and more electromagnetic
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Figure 5.1: Input Impedance for a Printed

Dipole with €¢,=2 and b=0.1016\c
Resonant Length L, =0.38\c
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Figure 5.3: Input Impedance for a Printed
Dipole with €¢=35 and b=0.1016\-

Resonant Length L,=0.1025)\.
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Figure 5.5: Current Distribution on a
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and Length L=0.65\-
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energy trapped in the dielectric which again means less radiated power.

b. SUBSTRATE THICKNESS VARIATION

As in section 5.2a, Figures 5.6, 5.7 and 5.8 show the real and
imaginary parts of the input impedance when the relative dielectric
constant is equal to 2.35 while the substrate thickness b takes the
values 0.1016 Xo, 0.25 ko and 0.46 Xo causing one, two and three
surface waves respectively to be excited. As the substrate thickness
increases, despite the fact that more surface waves are excited, the
possibility of many resonances is not affected. However, the increasing
substrate thickness makes the resonant length varying as shown in
Figure 5.9. 1In the region of one surface wave (I) the resonant length
increases, reaches a maximum for b approximately equal to 0.32 Xo
(region II) and continues decreasing as b becomes larger. As in the
case where the dielectric constant changes, here again the effect of

each new excited surface wave on the resonant length I_r is expressed

aLp(ey)

a:r

as a step discontinuity in the derivative The definition

of the bandwidth BW is assuced to be given by

Wy =l
BY = 271

g (5.1)
where Wy, w are the 3dB points of the response of the dipole considered
by its equivalent circuit (see Appendix F). The bandwidth of the dipole
and its resonant resistance as functions of the dielectric constant are
shown in Figures 5.11 and 5.12. 1In these two figures, the fact that

the bandwidth curve follows in shape the resonant-length curve {s quite

interesting. Both the resonant resistance and the bandwidth have their

minimum value at b = 0.38%o and their maximum value at b = 0.22X° while
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Figure 5.6: Input Impedance for a Printed
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Dipole with ¢=2.35 and b=0.46\.
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the maximum resonant length occurs between these two values. The
current distributions on a dipole of length L = 0,65 Xo with €, " 2.35
and for b equal to 0.1016 Xo’ V.25 Xo and 0.46 Ao are given in Figure
5.10. From these figures it can be observed that the increasing number
of surface waves coming from changes in the value of b does not affect
the current distribution so much as it does when € changes., Here again
larger substrate thickness means more electromagnetic energy trapped in

the dielectric and less radiated.

5-3. DIPOLE EMBEDDZD IN THE SUBSTRATE

a. VARIATION OF DIPOLE EMBEDDING POSITION

Figure 5.13 shows the real and imaginary parts of the input impe-
dance of a dipole printed on the dielectric interface with relative
dielectric constant € = 3.25 and substrate thickness b = 0.1016 Ao.

If the dipole is embedded in the dielectric substrate, the input impe-
dance will change as shown in Figures 5,14, 5.15 and 5.16. From these
figures it can be observed easily that the shape of the curves remains
the same while the maxima and minima are shifted to smaller values of
the dipole length. Figure 5.17 shows the resonant length Lr as a
function of the dipole-ground plane distance. The change in the
current distribution as a dipole of length L = 0.65 Xo is placed closer
to the perfect conductor plane 1s shown in Figures 5.20 and 5.21 for
four different cases: b' =b, b' = 29 b, b' = A b and b' = 2 b

100 10 3

where b' is the dipole-ground plane distance. Also Figures 5.18 and

5.19 show the resonant resistance Rr and the bandwidth BW as functions

of b-b', the distance of the dipole from the air-dielectric interface.
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Figure 5§.13 : Input Impedance for a Dipole
with Embedding Distance b-b'=0,
€ =3.25 and b=0.1016\
Resonant Length L,=0.32\.
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Figure 5.14: input Impedance for a Dipole
with Embedding Distance b-b'=b/100
€,=3.25 and b=0.10168\.
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Figure 5.16: Input Impedance for a Dipole
with Embedding Distance b-b=b/3

€ =3.25 and b=0.1016\.
Resonant Length L =0.24\c
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Figure 5.17: Resonant Length vs. Embedding
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€=3.25 and b=0.1016\c
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Figure 5.18: Resonant Resistance vs. Embedding
Distance b-b' for a Dipole with

€=3.25 and b=0.1016\c




8w Ol

0.05+

0.0l
il I
0b/I00  b/I0

|

b/2

b3 —
b-b'(\.)

Figure 5.19: Bandwidth vs. Embedding Distance
b-b' for a Dipole with ¢ =3.25
and b=0.1016)\o

€2




Re(l) in mAs Im(1) In mAs

{
-04 -02 0O 02 04 -2 -l 0

1y 1
-O.H‘-.ziolo.z 04 -2 3 o T 2

Figure 6.20: Current Distribution for a Dipole
Embedded in the Substrate with
€,=3.25,b-0.1016 and Length L =0.65\
(a): Embedding Distance b-b'=0 |
(b): Embedding Distance d-b'=b/100 |
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Figure 5.21: Current Distribution for a Dipole
Embedded Iin the Substrate with
€ =3.25,b-0.1016 and Length L=0.65\.
(c): Embedding Distance b-b'=b/10
(d): Embedding Distance b-b'=b/3




The hipls slope of thesc two curves as wcll as of the resonant length
curve (Figure 5.17) for small values of b-b' is characteri-tic of the
air-dielectric substrate electrical discontinuity.

b. RELATIVE DIELECTRIC CONSTANT VARIATION

We consider now the dipole shown in Figure 5.22. The thickness of
the dielectric substrate is equal to 0.1016 )o and when it is combined
with €. = 2 and €, = 10 it permits the excitation of one and two
surface waves respectively. The real and imaginary parts of the
input impedance for these two cases are shown in Figures 5.23 and 5.24.
From these figures it can be observed that for the case of two surface
waves, as well ag for the case of one surface wave, many resonances are

possible as the length of the dipole increases.

This does not happen when the same dipole is printed on the di-

electric interface. Figure 5.25 shows how the resonant length Lr

varies as a function of €, for three different positions of the dipole:
a) printed on the interface(l), b) embedded in the substrate at 2

distance % B (2),and «¢) % (3){rom the ground plane. It is quite
interesting to note that as the dipole enters the dielectric substrate.
its resonant Length-Dielectric Constant curve does not change shape

but moves to smaller values for the resonant length. Thie means that

curve 5.17 maintains its shape as the dielectric constant

changes. For this reason it is expected again that the effect of each

new excited surface wave on the resonant length will be expressed as

dle(ey)
a discontinuity in the derivative —EEE e

and the curve Lr = f(tr) for
€ larper thar 10 will exhibtit a similar variation as the one for the

printed dipole (Figure 5.5). Figure 5.2¢ shows the current distribution
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Figure 6.22: Dipole Embedded in the Dielectric

Substrate
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Figure 56.23: Input Impedance for a Dipole
Embedded in the Substrate with

b'=b/2,¢,=2 and b=0.1016\.
Resonant Length L,=0.318\.
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Figure 5.24: Input Impedance for a Dipole
Embedded in the Substrate with
b=b/2,¢, =10 and b=0.1016X\.
Resonant Length L'=0.137>\e
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Figure 6.28: Current Distribution on a Dipole
Embedded in the Substrate with !
b'-b/2,b=0.1016\c and L=-0.65\.

al%

S YT e iSO £ Y, P Y s .




on the dipole of Figure 5.22 with its length equal to 0.65 Ao and for
two values of Er (cr = 2, 10). The increase in the number of zeros
resulting from the increasing relative dielectric constant is, as in
the case of the printed dipole, characteristic of the substrate proper-
ties.

c. SUBSTRATE THICKNESS VARIATION

The dipole of Figure 5.22 will now be considered again. TFor this
dipole with a relative dielectric constant for the substrate equal to
2.35, the real and imaginary parts of the input impedance for three
different values of the substrate thickness are given in Figures 5.27,
5.28 and 5.29. These three values of b (0.101¢ )0, 0.25 )o and 0.4¢ 20)
cause one, twe and three surface waves to be excitel. As shown in
Figure 5.30, the resonant length as a function of the substrate thick-
nese goes through a minimum in region I (one surface wave) and continues
increasing in regione I1 (two surface waves) and II1 (three surface

Ll ()

waves) with a step discontinuity in its derivative a8t the
point where & third surface wave is excited. Assurning the same defi-
nition of bandwidth as in section 5.2, one can deterrin¢ its varisticn
with respect to substrate thickness b. 1In addition the resonant re-
sistance ac a functior of the same parareter is shown in Figures 5.31
and 5.32. Fror these figures one can see that the rescnant resistance
Rr is monotonically increasing as ! increases witl step discontinuities

2P (1) . . .
irn the derivative —f-—" at the points wherc & new surface wave is

2%
e

excited. The bandwidth B follows in shape tto variation of R. but it
exhihite much larger slope. Figure 5.23 showe the current distributien

of the dipcle of Fipure 5.22 wher 1 = (.65 o = 2.35 and b =

T




o
} (oh.'nrr.) n
R
|
6000} — 4
4000| —
|
|
& 2000
;
o -
l
X
-
!
3 -20001—
:
j | | f 1 ‘
! .2 3 4 5 6 7 i
! L(A.)
hf Figure 8.27: Input Impedance for a Dipole
H Embedded in the Substrate with
b-b/2,¢,-2.35 and b=0.1016\.
Resonant Length L,-0.288\.




(ohms)

3000

2000

1000

o -1000 — J
-2000—

-3000—

- _J 1 1 B [ P
4000 ' 5 : B
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Figure 5.32: Bandwidth BW vs. Substrate Thickness
b for a Dipole Embedded in the Substrate

with b'-b/2 and €,=2.35




. ~Bel)_in_mAs_ _.Amt) _in_mAs

b=-0.1016 )¢
1 i J 1
-0l -005 O 005 Ol -2 -l 0 | 2
b=0‘25>\c
1
-02 -0l - (0] { 2
b=0.46hc
—
J _| | J
-| -Q.5 O 05 -2 - (o) { 2

Figure 6.83: Current Distributionn en a Dipole
Embedded in the Substrate with
€=2.35 b'=b/2 and L=0.85\.

TE TSN T o s e I T, W B n,:_ F Sy




0.1016 > , 0.25 »_and 0.46 > .
o o o
Figures 5.34 and 5.35 show the current distribution as a function i
of the length of the dipole (Figure 5.22) when b’ = 2b/3, b = 0.1016 >
and € = 2.35. The feed point is not located at the middle of the
dipole contrary to all the cases which were studied until now. The
distance of the feed point from the nearest end of the dipole is 1/4

of the dipole length.
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Appendix A

INTEGRAL REPRESENTATION OF THF PRIMARY

SOLNTION

As mentioned in Chapter 2, the primary solution is the particular
solution to the wave equation given by:

Juyu -Jkr
d
G = - __“% SL}rn_ (5.1)
P 4k’
It is desired to bring the representation (4.1) of G;y into the forr

of superposition of eigenfunctions Cn. Since the cvlindrical polar

coordinates r, ¢, 2z are involved, these eigenfunctions will be ir tthe

form [31)
1 £33
. ni iVt T 2 -
vo=J{(x:) e e (&.0»
r. n
'y 2 Wik R : .
where o = [(%-%x")" 4 (y-v")] " and ’ are eigenvalues which for the casc

of an infinite cvlinder with finite radius are restricted to a cis-
crete spectrur. However, if ¢ =+ o« {as is the case hercs, * har a
continuous spectrur. 0 ¢ ) < = corresponcéing tc the unliritel reliur,
Alsc, from the eigenfunctions tL only those are used whicl arc irnde-
pendent of ¢; therefore n must be zero. Fror tiis discuscior it is

concluded that the particular solution (A.1) mav be put in the form:

8! Jev e o o4
Coo === | 7 ACY 3 G ™Y (5.7
; o o
C
with o A1
u= ("-k7]C

N .
}

"
r = [T+ (2+)°
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-u'tz+l
In equation (A.3) A()e w2t is the Fourjer-Bessel Transform of the

-jkr
function 9»;- and therefore is given by
o
_ 1 "jkl'
AQV)e ulz+h] -[ r & - Jo(xr) 4 (A.5)
o

Equation (A.5) is easily simplified by considering z = - h which gives
AQ) = fe'Jk“ 3, 00) & (A.6)
o

In (A.6) JO(XC) is replaced by its integral representation

.
_ 1 jipcosw ,
I, 00 = 3; f— e dwe (A.T)

and the relation
r

A()) = 7_1": / dw felo("k+)COSW) d: e
-~ o
1 T g
5 27 3 f “k+icosw (4.8

results. The re~z2ining integration in (A.8) gives 1

sy = L
A(')-u

If equation (A.%) is substituted inte (A.3) the feollowing relation for

Gd is obtained
P>

e « o .
Gd. = - S f J () e vizdh L d: (4.10)
* . o u




Appendix B

DERIVATION DF THE_COMPONENTS ¢ and €

During the formulation of Pocklington's integral equation the

following two relations

-1
2 3G
Bz T 3% (8.1)
BGd d
z .. oC (8.2
ez ox =)
were obtained. By observing that é? = - i%, one can write these tvoe

equations as follows:

ECZ

d¢ = dx' (8.3)
ez

dc” = —= dx' (B.4)
0z

or

Equation (2.3<) in Chapter 2 yields, for h =

ju;o
G, = - - (1-¢) cosff 3G 0
A.o ¢

sirnh(ut) cosr(uv) 2. (%.7)

Bv differentiating (B.7) with respect tc © an? by changing the order

of integratior and differentiatior one find- tle folleowing relation:




3G Juv 2 u z J
P ] (l-tr) cos? ] (-Uo) Jl(lr) e o -
(o]

¢ 27k
o
sinh (ub) cosh(ub)
«—~~————-—-A
£,0,5) - £,00,b) %
jws a0
= - o (l-¢_) cosé u ——JP—(——-) e Y? -
2 T o d(»:)
2nk o
o
1
sinh(ub) cosh(ub),
£.0,5) - £,0,5) o (3.8)
From the relations
2 2,5
fo= [G=x")" + (y-y"7 ) (B.¢)
and
coss = XX (B.10)
it is determined tha:
d__ = _ cos (8.11)
dw
an?
i AR U A L
a(:. ) > éx’ d. "
dJ (¢:0)
;
-1 e L (3.12)
’ d> cos

A substitution of (B.12) intc (2.f) vields the folloving relation

sinhfut Co“ lu‘ .
—_—— LA A}
(.0 -‘ }‘ (F.13
‘

&




wiile fror (B.5) and (BE.13) we have

ko * -u_z
C = - ~2~"—k—2~ (tr~1) f Jo()c) e o0° . uo)’
o o
sinh(ub)_cosh(ub)
£,0,0) 7 £,0,0% (8.14)

In a similar manner

a Juu, usinh{u(b-h) ]
¢? = -2 (-c) [ 3.0 Usinblu(b-h)]
2rk2 r . o fl(x,b)

sinhlu(z)],
£.0.5) (8.15)

results.




Appendix C

UNIQUENESS AND EXISTENCE OF THF SOLUTION OF THE

FUNCTIONAL EOUATION L (3)=(£x§) i

FERLLIIOAL SLVALAR Lop

. Uniqueness L

Let it be assumed that, for the equation Lop(3)=(Ex;), two
-+ -

vectors J, and J, exist such that [42]

Lop(Jl) = (Exx) and LOP(JZ) = (Exx) (c.1)

A subtraction of one from the other yields the conclusion that

Lyp(Jy=Jp) = 0 or 1 (@) = [ (C.2)

where d is the solution to the homogenous equation Lop(j) = 0.
Because of the physics of the problem, with no excitation the
induced current on the dipole is identically zero and there-

- - - -
fore @ = 0 which gives J, = J

1 Therefore the solution is

"o
“~
unique.

. Existence

The homogeneous adjoint equation

12 (3 = o (c.3)
op
is considered with J2 in the adicint domair ?(1;,). By the
definition of the adjoint operator

a
on

a

< Lo,(S», 3@ =<3, 12 G5 - (C.4)
13

or

< (Ex), 37 - = <3, T (c.5

SC




Equation (C.5) reduces to

< (zxi), Ps=0 (C.6)

Since it has been proved that the operator Lop is self

adjoint,
a
lbp Lop c.?n
results.

Because of (C,7), equation (C.3) reduces to

=3
Lop J) =0 (c.8)

which was shown earlier to have a solution identically equal
to zero. Therefore equation (C.6) is satisfied, and the
existence of the solution of the original functional equation

is concluded.
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Appendix D

CONDITIONS IMPOSED BY THE OUTGOING-PROPAGATION-

CHARACTER REQUTREMENT

As shown in Chapter 2, both of the components of the Green's
Function in air include a factor e "o> in their integrands. This
factor, together with the exponential time dependance factor takes
the forr

clz,t) = e Vo? * et (D.1)

The transformation

uo = 3 ko cosw (we O (D.2)

leads to the following relationshiy for ?

> = k_sinw (D.3)
o
Assuring that w = 7 + jv one can show that equations (D.2) and (D.3)
becore
+ = F sin- sink 4+ 3§ k coe” coshv (D.4)
o o ©
» o= ko sint coshv 4 ko cos” sinhv (D.5)

Because of(D.4), equation (N.1) car be put in the form

o(z.t) = edlet = k7 cost cos coshvl -k z sin- sinhv (D.6)
*

In order to satisfv the outgoing character of the propagating waves,
the following relations must be satisfiel:

sin T eirt o ( (.7

coe T coshe » o (.8




From (D.7), (D.8), and from the fact that the contour of integration

with respect to A is extended along the positive real axis it is obvious

that
sint > 0 (p.9)
sinhv > O (p.10)
¢cos 1> 0 (D.11)

A consideration of inequalities (D.9) - (D.11) into (D.5) indicates
that the real and imaginary parts of the parameter )} satisfy the

relations

Re [»] > 0 (D.12)

Im (2] >0 (D.13)




Appendix E

As mentioned in Chapter 4, the integration along the interval
(ko,k] faces the existence of a finite set of discrete essential sin-
gularities which with a surface wave character, affect considerably
the input impedance and radiation characteristics,

If it 1s assumed that S is the set of these singularities then
S is given by

= { = = 1 v = =
S \xi/[xi root of fl(l,b) 0] v [xi root of fz(l,b) 0]

and i =1, 2, ... N (E.1)

A partition P [tn¢1] of the interval [ko,k] is considered such that
= = } = k° 2
F [tn+]] {to Byt <X, .t < Xt k: (E.2)

The integrals (4.32) and (4.33), with the J}-integration extended fro-

ko to k, can be put in the forrn

r. tr+]
1=, LRSS R I S (E.3)
T = tr -
where
k41 Y34
I O: ) = dx- () éxfz(x") J (. (E.&
o ki C ]
: %,
kk ] '
or
s \
FI,0 ) = dt(x) 3,00 ) (£.3

3
Equatior (T.2) car alsc be writter as fcllow::

t LY .
T.‘ r+l 5 ¢ ut" 1
R SN [ z.0
r=o t > o=

T

4l




with Qr(k,b,cr) = A(l-xr) f(l,b,cr) FJO(lpkj) (E.7)
Q:j(x ,b,cr)
In (E.6) the quantity oy s added@ and substracted giving
r

. t kj kj
X r+1‘¢r (A,b,cr)- Qr (xr,b,cr)
1= Z d +
A -x
r=0 Jt r
r
N t kj
r+l Cr (xr,b,cr)
DD a-E-—E (£.8)
=0 Jt A -3
Y
or
N
tr4l ij(),b,c ) - ’kJ(xt,b,c )
1= Z a +
r=0 t, b - X,
. tr4l
LK a:
3 ek b)) - (E.9)
t r
r=C r
Fror. equation (E.9) the integral car be put in the final form
N fr+1 k k3
>3 ¢ 0 bye) - ¢ T be) ‘
1= 4 v
r=0 ) - X ]
tr r
) It x_!
k3 S 25 S
+ z $.7 (e ubae) [Ln l——xr———_ t 3 ] (E.10)

r=(

Ir the equatior. above, the integrands

PN i PR S R



kj kj
<I‘ (X,b.cr) ‘fr (xt’brcr)

A -x
b 4

are slowly varying functions in the intervals [tr, tr+1] and the inte-

grals can be evaluated using a Gaussian-quadrature integration method

with four fixed points [36].




Appendix F

BANDWIDTH OF A DIPQLE PRINTED OX OR

EMBEDDED IN THE DIELECTRIC SUBSTRATE

We consider the dipole by its equivalent circuit (Fig. F-1).

The impedance seen by the voltage generator is given by:

1
Z,, =R+3 (wl - uc) (r.1)
With X being the imaginary part of the input impedance, eguation (r.1)
E can be written as follows:
L = $ ¥ 2
, j Zin R + J X (F.-)
n
‘ with
k!
. 1
Y= t.L-:—C

A differentiation of both sides of equation (F.3) with respect tc

frequency vields the relation

o
= L [1 + (_uz)?] (.8

with o the resonant frequency of the dipele, give:

e

! (7.5

T i
Vit

with o = o in equation (F.4), the derivative of the reactance with

respect tc frequency at resonance is given by

ar
aie. T H (.o
1f “ and ., (;2 > ur) are the 3 dF poirte orn the response of the
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tuned circuit (Fip. F-1) the quality fartor Q satisfies both the

relations

Q= - (F.7)
Y27
and
A (F.8)
R

From equations (F.7) and (F.B) the relation
b - Wy = % (F.9)

results,
If one substitutes (F.6) into (F.9) and if the following bandwidth

(B™) definition is assumed

2 -1
B = -5 — (F.10)
[
r
ther the relaticn
B ot .1 (F.11)
) g-).: Lr ‘. A
d.'. =
r
is conclude? witl.
ar’ L ar - 1
e = oA Ty (5.12)
- 9-7
d- “r - d(&)'L = L
’ . T

where ¢ ie the velocity of light in the mediur surrounding the dipole
and L is the lenctl of the dipole. Fror eguatione (F.11) and (F.1D)

t can he foun? that the bandwidel is piven

R B
E o= 1, @
d,:i‘_l_,v
(’) - N
9¢

— —— .
i o S A lee
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Figure F-1: Equivalent Circuit

of a Dipole

Printed on or Embedded in the

Substrate
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where Lr is the Resonant Length normalized with respect to free space

wavelength,







